PGD (CIS)

Operating Systems

Operating Systems (Third Edition, William Stalling)

Internals and Design Principles

Topics By Sir Saeed

1. Computer Architecture and Design

2. Operating System Overview

i. Operating System Object & Functions

ii. Evolution of O/S

a. Serial Processing

b. Batch System

c. Multi-programmed Batch System

d. Time Sharing System

3. Process Management

1. Process/Threads

2. Concurrency Control

a. Mutual Exclusion

b. Synchronization

c. Dead Lock/Starvation

4. Memory Management

1. Memory / Virtual Memory

5. Scheduling

1. Unprocessors Scheduling

Major Components of Computer / Basic Elements
Page 4
Processor (CPU)

Main Memory

I/O Modules

System Interconnection

[image: image1.wmf]

R1

R2

R3

9

3

6

1. Processor Registers

Page 7-9
2. User Visible Registers

i. Data Registers

ii. Address Registers

1. Index Register

2. Segment Pointer

3. Stack Pointer

iii. Control Flags

3. Control and Status Registers

i. Program Counter

ii. Instruction Counter

iii. Program Status Word

Instruction Execution:

Instruction Cycle

PC: Program Counter holds the Address of Instruction to be fetch next.

IR: Instruction Register holds the instruction to be executed.

Instruction Types:

· Process – Memory Transfer Instructions

· Processor
I/O

· Data Processing

· Control

 Page 10 -13

Interrupts:

Instruction cycle with Interrupts:

Page 16
Simple Interrupt Processing:

Process Models
Page 102 - 105
Process States

Main responsibility of O/S:

· Controlling the execution of processes (Interleaving pattern for execution)
· Allocating resources to processes

We count that the single model by observing at any time a process either executed or not.

Two State Process Model:
State Transition Diagram

Queuing Diagram
Problem of the above model:
Dispatching to queue as FIFO base/Round Rain Fashion so some processes may be blocked due to I/O request so they take the time of Processor.

Five state process model:
Page 107 - 112

· New job

· Created by OS to provide services (Printing)

· Spawned by existing process
· All new processes wait here if the limit of active processes is exceeded
· I/O operations

· Resource request like file

· OS service for which OS is not ready to perform immediately

Single blocked queue:

Multiple Blocked queues:

Page 112
Problem with 5 states model:

If OS doesn’t support virtual memory management then there is a big possibility that all processes will be in blocked state so most of the time processor will be idle and as well there is not enough memory to load new processes.

Solution:

Swapping of processes between main memory and disk (Virtual memory).

With One Suspend State:

Page 113
In this situation if OS needs to add process in Ready state then there are two possibilities:

1. Add new processes from (New) (Additional load on system)

2. Activate the suspended process (Better solution)

But here are two types of suspended processes:

1. One is blocked and waiting for event occurs

2. Other is receive event occurs and waiting to swap in memory but not spawning in available ready queue so it needs two suspended states.

Reasons for process suspension:

· Swapping: OS needs to release sufficient memory to bring in a process that is ready to execute

· Interactive user request (For debugging)

· Timing (Process may be executed periodically, like accounts or process monitoring and may be suspended while waiting for next time interval.

· Parent Process request

With two suspend states:

Process Description

Page 117 - 118
The OS controls events within the computer system, events can be controlled through the

Schedulers, Dispatching processes for execution and Allocating resources to processes.
What information does the OS need to control processes and manage resources for them:

The OS constructs and maintains the tables of information about each entity that it is managing.

General structure of Operating System Control Tables

These tables are cross-referenced

Creation of tables:

OS must have some knowledge of basic environment such as:
· I/O devices and their identification

· How much main memory is available/exist

At the OS initialization time OS must have been informed some confirmation data that the basic environment provides (BIOS).

Information description in tables
Page 118 - 122
Memory tables:

· The allocation of main memory to process

· The allocation of secondary memory to process

· Protection attribute of main and virtual memory (Shared memory areas)

· Information needed to manage virtual memory

I/O tables:
· Used by the OS to manage I/O devices and channels of computer system

· I/O device may be available or assigned to a particular process

· Status of I/O operation

· Address of main memory being used as source or destination of I/O transfer

File tables:

· Provide information about existence of files

· Location in secondary memory

· Current status

Primary Process table:

Used to share the location (segment) of process image in main/virtual memory

Process Image:

· User data

· User program

· System stack

· Process control block

Process Control Structure:

OS must know where the process is located (main/virtual) and the attributes of the process that are necessary for its management.

Process Control Block:

· Process Identification

· Processor state information

· Process control information

Process Identification
Page 122
Numeric identifiers may be stored with the process control block include

· Identifies of process

· Identifies of parent process

· User identifier

Processor State Information

· User-visible Register

· Control &status register (Program counter, Condition codes & Status Info.)

· Stack pointers (LIFO system stack)

Note:
When process is interrupted, all of their registers must be saved before switching, so that it can be restored when the process resumes execution.

Process Control Information
· Scheduling and State Information

Process State (Ready, Running, Waiting or Halt)

Priority (Default, High or Low)

Scheduling-related Information (Amount of time, the process has been waiting, running, the last time it was running.)

Event (Identity of event the process is awaiting)

· Data Structuring

A process may be linked to other process in a queue/ring (Like in a waiting state for a particular priority level may be linked in a queue)

Parent child relation ship information

· Inter-process communication

Various flags, signals and messages

· Process Privileges

Memory may be accessed and types of instructions executed

· Memory Management

Pointers to segment and/or page tables that describe the virtual memory assigned to the process

· Resource ownership and Utilization

Open files

History of process utilization

Other resources

Process Control

Page 127 - 130
Modes of execution (Processor)

1. User Mode (Less privileged)

2. Kernel Mode (More privileged)

· Instruction to read/write process control information

· Memory management

· Primitive I/O instructions

Process Creation

· Assign a unique process identifier to the new process

· Allocate space for process (Space require for process image)

· The process control block must be initialized. This contains:

· Process identity + parent process identity

· State information (Ready or ready suspended)

· Processor state information

· Priority

· The appropriate linkages must be set (Process must be put Ready/Ready Suspend list

· Optimize information (OS accounting file etc)

· Some events triggers a process switch

· There is difference b/w process switching and mode switching

Process Switching:

At some time, a running process is interrupted and OS assigns another process to the running state and turns control over to that process.

When to switch processes:

Clock Interrupt

· Interrupt

I/O Interrupt

Memory Fault

· Trap

· Supervisor Call

Mode Switching:

Interrupt Processing, if an interrupt is pending, the processor does the following:

1. It saves the context of the current program being executed

2. Sets Program counter to the starting address of an interrupt handler program

3. Switching from User Mode to Kernel Mode

Change of Process State

Page 131 - 133

If mode switch occur without changing the state of the process that is currently in the Running State. In that case, the context saving and subsequent restore involve little overhead.

Else

Steps involve in process switching:
1. Save the context of the processor

2. Update the process control block

3. Move the process control block to the appropriate queue

4. Select another process for execution

5. Update the process control block of the process selected

6. Update memory management data structures.

7. Restore the context of processor from Process Control Block

Execution of Operating System

· Older Operating System Design

· Only User program consider as process

· When running process is integrated OS takes control

1) Separate Kernel (Non process Kernel)

· Adult only when mode switching occurs

· OS functions are executed in the same context of user process

· Process Image
2) OS functions execute within user processes

 3) OS functions execute as separate processes
Relationship between Operating System and User Processes
Unix SVR4 Process Management

Page 135 - 136
Unix is the combination of last two models

Process 0 (Swapper) Process 1 (Init Process/User Process)

Unix Process State Transition Diagram

Swapped = Blocked

Asleep/sleep = Suspended

Page 137 - 140
Process Description
Unix Process Image:
User Level Context

· Process Text

· Process Data

· User Stack

· Shared Memory

Register Context

· Program Counter

· Processor Status Register

· Stack Pointer

· General Purpose Registers

System Level Context

· Process Table Entry

· U (User) Area

· Per Process Region Table

· Kernel Stack

Unix Process Table Entry

Unix U (User) Area
· Process Status

Process Table Pointer

· Pointers

User Identifier

· Process Size

Timers

· User Identifiers

Signal Handler Array

· Process Identifiers

Control Terminal

· Event Descriptor

Error Field

· Priority

Return Value

· Signal

I/O Parameters

· Timers

File Parameters

· P _ Link

User File Descrp. Table

· Memory Status

Limit Fields

Permission Modes Fields

Process 0 = Swapper Process: Created at boot time.

Process 1 = Init Process: Insertion of all other processes

User Process: When user logs onto the system

Page 146 - 150
Multithreading

Single Thread and Multithread Process Model
Single user single thread (MS DOS)

Multi User single thread (Unix)

Multi User multi thread (NT/Linux/Solaris)

Thread status:

· Spawn

· Block

· Unblock

· Finish

User Level Threads:

Page 153
Thread Management Library

· Creation

· Scheduling

· Switching

Advantages:

Page 153 - 157
· Thread switch does not require mode switching

· Scheduling can be application specific

· ULT can run on any OS
Disadvantage:

· When a thread executes a system call, not only is that thread blocked, but all of the threads within the process are blocked.

· It cannot take advantages of SMP (Symmetric Multiprocessing). A kernel assigns one process to only one processor at a time.
Kernel Level Threads:

The kernel does all of the work of thread management. There is no thread management code in the application area, simply an Application Programming Interface (API) to the kernel thread facility. Windows NT and OS/2 are the example of this approach. The above both disadvantages are removed here, but mode switching is required.

Combined Approaches:

It is a combination of ULT and KLT. Sun Solaris is the principal example here. Multiple threads within the same application can run in parallel on multiple processors and a blocking system call need not block the entire process. It minimizes the disadvantages of both approaches.

(a) Pure User Level (Unix)

(b) Pure Kernel Level (NT)

© Combined (Solaris)
Windows NT Thread and SMP Management Page 170 - 171
· Process are implemented as object

· Executable process may contain one or more threads

When a user first logs on, NT creates an access token that includes a security ID for the user. Every process that is created by or runs on behalf of this user has a copy of this access token. NT uses the token to validate the user’s ability to access secured objects or to perform restricted functions on the system and on secured objects.

List of object

Owned by process

Shared Memory Section
Windows NT Process and its resources
There are two type of process related to objects:

(1) Process Object

(2) Thread Object

· Process is an entity corresponding to a user job or application that owns resources, such as memory files

· Thread is a dispatch able unit of work that executes sequentially and is interruptible.

Windows NT Multithreading
Page 172 - 174
Process

Object Type

Thread

Process ID

Thread ID

Security Descriptor

Thread context

Base Priority

Dynamic Priority

Default Processor affinity

Base Priority

Quota Limits

Object

Thread processor affinity

Execution time

Body

Thread execution time

I/O counters

Attributes
Alert status

VM operation counter

Suspension count

Exception/Debugging ports

Impersonation Port

Exit status

Termination port

Thread exit status

Create process

Create thread

Open process

Open thread

Query process information

Query thread information

Set process information

Services
Set thread information

Current Process

Current thread

Terminate Process

Terminate thread

Allocate/free virtual memory

Get context

Read/Write virtual memory

Set context

Protect virtual memory

Suspend

Lock/Unlock virtual memory

Resume

Query virtual memory

Alert thread

Flush virtual memory

Test thread alert

Register termination port

(A) Process Object

(B) Thread Object

Thread States:

Concurrency Control

Page 187 - 191
· In Uni-processor environment processes are interleaved (Multiprogramming)

· In Multi-processor environment processes are interleaved + overlapped (Multiprocessing)

· Operating must take care of share resources (Memory, Files, Drivers) for concurrency control.

· Fundamental to all of these areas (Multiprogramming, Multiprocessing & Distributed Processing) and fundamental of operating system design, is concurrency.

Concurrency Control Problem: (Simple Example)

Single processor + multiprogramming system

Shared global procedure Echo

Void ECHO (void)

{

char in, out;

input (in, Keyboard);

out = in;

output (out, display);

}

In uni-process:

1. If P1 is interrupted after 3 (in = x)

2. Then P2 executes (in = y)

3. And P1 resume printing (Display)

In Multi-processes:

Process P1

Process P2

.

.

Input (in, keyboard)

Input (in, keyboard)

.

.

out := in

out := in

Output (out, display)

.

.

Output (out, display)

Solution: ECHO is Mutual Exclusion

Example 2 (Private & inter-process communication)

Spooler Directory

Used by printer

 :

4 abc

out = 4

5 ijk

in = 7

Process A
6 xyz

(Race Condition)

(Out and In are shared global variables)

Process B

(1) Processes A & B decide to print data (2) A gets next available slot = in (7) then clock interrupt occur so, process A switch with B.

(3) Now B gets in = 7 in local variable, put file name in Spooler Directory and update in = 8.

(4) Now switch occur and A put file name at slot 7 and update in = 8.

Spooler Directory is internally consistent so, printer Daemon will not notice any thing wrong.

Mutual Exclusion of share resources

Page 193 - 196
Cooperation among processes by sharing:

New control problem is the result of Mutual Exclusion

· Deadlock

Shared Variable a = b
Revised

· Starvation

P1:
a:= a + 1;
a:= a +1;

· Data Coherence

b:= b + 1;
b:= 2 * b;

P2:
b:= 2 * b;
b:= b + 1;

a:= 2 * a;
a:= 2 * a;

Requirement for Mutual Exclusion:

1) Mutual exclusion must be enforced: Only one process at a time is allowed into its critical section, among all processes that have critical sections for the same resource or shared object.

2) A process that halts in its non-critical section must do so without interfering with other processes.

3) It must not be possible for a process requiring access to the critical section to be delayed indefinitely: no deadlock or starvation.

4) When no process in the critical section, any process that request entry to its critical section must be permitted to enter without delay.

5) No assumptions are made about relative process speeds or number of processors.

6) A process remains inside its critical section for a finite time only.

Dekker’s Algorithm (Mutual Exclusion of two processes)
Page 197 - 199
First Attempt: (Busy waiting)

Shared Global Variable

Int turn; (o or 1)

Process 0

Process 1

While turn # 0 {nothing}

While turn # 1 {do nothing}

<critical section>

<critical section>

turn = 1;

turn = 0;

 .

 .

 .

 .

· True Mutual Exclusion

· But (Problems)
1) If one fails in its critical section other will never inter in its critical section

2) If out side the critical section process will fail then other process will never again in its critical section

Second attempt:

Boolean flag[2] (Initialize flag[0], flag[1] = false;

Process 0

Process 1

.

.

.

.

while flag[1] do nothing

while flag[0] do nothing

flag[0] = true

flag[1] = true

<critical section>

<critical section>

flag[0] = false

flag[1] = false

.

.

.

.

.

.

· The problem number 2 is solved here: If flag process is failed outside its critical section then other will not be blocked.

1) But the problem number 1 is still here.

2) New Problem: At the starting time there may be no Mutual Exclusion

· P0 executes and finds flag[1] = false

· P1 executes and finds flag[0] = false

· P0 sets flag[0] = true

· P1 sets flag[1] = true

Both are at the same time in the critical section.

Third Attempt:

Page 200 - 201

Process 0

Process 1

.

.

.

.

flag[0]:= true

flag[1]:=true

while flag[1] do nothing

while flag[0] do nothing

<critical section>

<critical section>

flag[0]:= false

flag[1]:= false

.

.

.

.

1. The problem of non-mutual exclusion at the starting time is solved.

2. Problem of process fails in critical section is still there.

3. New Problem.

New problem: If

· P0 sets flag[0] = true

· P1 sets flag[1] = true

· P0 will be blocked

· P1 will be blocked

So, the deadlock occurs.

Fourth Attempt:

Process 0

Process 1

flag[0] = true

flag[1] = true

while flag[1]

while flag[0]

{

{

flag[0] = false

flag[1] = false

<delay>

<delay>

flag[0] = true

flag[1] = true

}

}

<critical section>

<critical section>

flag[0] = false

flag[1] = false

The problem of deadlock is solved (99%), But

· P0 sets flag[0] = true

· P1 sets flag[1] = true

· P0 checks flag[1]

· P1 checks flag[0]
It may cause deadlock

· P0 sets flag[0] = false But cycle will be broken

· P1 sets flag[1] = false

Delay

· P0 sets flag[0] = true

· P1 sets flag[1] = true

Correct Solution:

Page 201 - 202
Flag[2], at turn
(flag 0, 1 = false; turn = 1)

Process 0

Process 1

Flag[0] = true

flag[1] = true

While flag[1]

while flag[0]

{

{

if turn = 1

if turn = 0

{

{

flag[0] = false

flag[1] = false

while turn = 1 do nothing

while turn = 0 do nothing

flag[0] = true

flag[1] = true

}

}

}

}

<critical section>

<critical section>

turn = 1

turn = 0

flag[0] = false

flag[1] = false

· First watch flag

· If

· true

· then

· check turn and wait

· other wise

· enter in critical section

Peterson’s Algorithm:

Page 202, 208 & 211 - 212
Boolean flag[2]; [flag 0, 1 = false]

Int turn; [turn = 1]

Process 0

Process 1

Flag[0] = true

flag[1] = true

Turn = 1

turn = 0

While flag[1] and turn = 1 do nothing
while flag[0] and turn = 0 do nothing

<critical section>

<critical section>

flag[0] = false

flag[1] = false

Other techniques for Mutual Exclusion:

· Interrupt disabling

· Test and set instructions

All of above techniques and software also have problem of Busy Wait.
SEMAPHORES

Two or more processes can cooperate by means of simple signals, such that a process can be forced to stop at a specified place until it has received a specific signal.

· To transmit signal via Semaphores S --(signal(s)

· To receive signal via Semaphores S --(wait (s)

Struct Semaphore

{

int count

queue list of process

}

if count = 1 then

this is called binary Semaphores

The Producer/Consumer (Infinite Buffer) Problem:

Single Consumer Multiple Producers

Producer

While(1)

{

producer item V;

b[in] = V

in = in + 1

}

Consumer

While(1)

{

while in <= out [do nothing]

w = b[out]

out = out + 1

consumer item w

}

The correct solution to the infinite-buffer /Consumer Problem Using Binary Semaphores

Page 215
To implement:

i. Mutual Exclusion (To avoid over wait)

ii. Synchronization

Variable Declaration:

Int n

S: Semaphores s(1), delay(0)

Producer

Consumer

{

{

while(1)

int m;

{

wait B(delay)

produce

while (1)

wait B(s)

{

append

wait B(s)

n = n + 1

take

if (n == 1) then signal B(delay)

n = n – 1

signal B(s)

m = n

}

signal B(s)

}

consume

if(m==0)

wait B(delay)

}

}

Main Program

Main()

{

n = 0;

parbegin

producer;

consumer;

parend

}

Binary Semaphores

Semaphores

B semaphores

semaphores

{

{

value (0, 1)

wait

queue

queue

}

}

wait B(s)

wait(s)

{

{

if s.value = 1

s.count = s.count - 1

s.value = 0

if s.count < 0

else

{

place this process in s.queue

place in queue

block this process

block process

}

}

}

signal B(s)

signal (s)

{

{

if s.queue is empty

s.count = s.count + 1

s.value = 1

if s.count <= 0

else

{

resume process from s.queue

 resume process from queue

place it in Ready queue

 place it in ready queue

}

}

}

Monitors

Page 222 - 227
Semaphores’ programs are easy but wait + signal operation may be scattered throughout a program, so the change in order of their codes may cause deadlock condition.

To prevent this by using Monitor

Monitor code can have

{

· Local data

· Condition variable

· Function 1

· .

· .

· Function n

· Initialization code

}

The characteristics of Monitor are the following:

1. The local data variables are accessible only by the monitor’s procedures and not by any external procedure.

2. A process enters the monitor by invoking one of its procedures.

3. Only one process may be executing in the monitor at a time: any other process that has invoked the monitor is suspended, waiting for the monitor to become available.

For Synchronization:

· C wait © suspend execution of calling

· C signal © on context C

Solution to the Bounded buffer Producer/Consumer Problem using Monitor
Monitor

Producer

Buffer [0….N]

{

Int nextin, nextout;

.

Int count;

while (1)

notful, notempty;

{

append (x)

.

{

.

if (count == N)

producer (x)

c.wait (notful)

append (x)

buffer [nextin] = x

.

nextin = (nextin + 1) % (mode) N

.

count = count + 1

}

c.singal (nextempty)

}

}

take (x)

Consumer

{

{

if (count == 0)

.

c.wait (nextempty)

.

x = buffer (nextout)

while (1)

nextout = (nextout + 1) % (mode) N

{

count = count – 1

.

c.signal (notful)

.

}

take (x)

Monitor (initialization code)

{

consumer (x)

 nextin = nextout = count = 0;

}

}

}

 Main Program

Main () {producer;
consumer;}

Message Passing

Page 230 - 233

Useful for IPC with Mutual Exclusion + Synchronization at Distributed both Uni & Multi Processor Environment

Primitives

· Send (Destination, message) (1) Blocking

· Receive (Source, message) (2) Non-blocking

Blocking Send + Blocking Receive (Tight Synchronization Process)

Most Common

· Non-blocking Send

· Blocking Receive

Addressing

· Direct Addressing (Sender and Receiver must know process identification)

· Indirect Addressing

Sender

Receiver

1

 1
(Private Communication)

M

 1
(Client/Server)

M

 M
(Broad Cast)

Association

Dynamic
S

R static (1-1, M-1 & 1-M)

(M-1, 1-M & M-M)

Mutual Exclusion Using Message

Page 235 - 236
Main Program

Main ()

P (int I)

{

{

create_mailbox(mutex)

msg: message;

send (mutex, null_msg_token)

while (1)

parbegin

{

P(1);

receive (mutex, msg);

P(2);

<critical section>

….

send (mutex, msg);

P(n)

}

Parend

}

}

A solution to the bounded buffer Producer/Consumer Problem using Messages

Variable Declaration:

Const

capacity =[buffering capacity]

null = [empty message]

var int i;

Producer

Consumer

{

{

message=pmsg;

message=cmsg;

while (1)

while (1)

{

{

receive (mayproduce, pmsg)

receive (mayconsume, cmsg)

pmsg = produce;

consume (cmsg);

send (mayconsume, pmsg)

send (mayproduce, TOKEN)

}

}

}

}

Parent Process

create_mailbox (mayproduce)

create_mailbox (mayconsume)

for i = 1 to N

send (mayproduce, TOKEN)

parbegin

produce;

consume;

parend

Deadlock

Page 254 - 261
Deadlock can be defined as the permanent blocking of a set of processes that either compete for system resources or communication with each other.

Type of Resources:
· Preemptive (Like Memory)
(That can be taken away from the process owning it without ill effects)

· Non- Preemptive (Like Printer)
(That can not be taken away from the process without causing the fail)

Reusable Resources (File etc)

Consumable Resources (Signal of IPC)
The condition for deadlock (By Coffman)

1.
Mutual Exclusion

2.
Hold and wait

 Request

 Hold By

3.
No Preemption

4.
Circular wait

Hold By

 Request
There are four strategies area used for dealing with deadlock:

1. Just ignore the problem altogether (Ostrich algorithm)

2. Prevention by structurally negating one of the four require conditions

3. Dynamic avoidance by careful resource allocation

4. Detection and recovery
(1) Ignore the problem altogether (Unix & Minix)

Example:

· Number of process in the process table

· Number of files in I-node table

(2) Deadlock prevention

(a) Mutual Exclusion:

If prevented (next implemented) then data consistency problem

Else

Deadlock occurs

Example:

· Two processes open same file in Read or Read + Write mode

· But both connect open in the Write mode at the same time.

(b) Hold and wait:

Page 261

Requiring all resources before execution can prevent it

If not available then wait.

Problem:

· Many processes don’t know which resource they will need until they started

· Process may wait for long time to acquire resource

· Resource allocated to a process may remain unused for a considerable period.

© No preemption:

It can be prevented by preemption of resource

If one process holds the resource and second process request for the same resource then OS take the resource from the first process and give it to the second one, so no deadlock occurs.

But it is possible

· Process of two different priorities

· Resource where state can be saved and restored.

(d) Circular wait:

We can prevent them in two ways

(e) Process can hold one resource at a time if it needs the second one then first it release the first resource then request for second resource.

Not suitable If

Copy one long file from one location to another location.

Linear ordering of resource type (Global numbering)

(f) Processes are restructured to request resource in numerical order

Example:

If Process 1 holds Ri so, it can only request for Ri

Where i < j

1 CD ROM

2 Printer

3 Hard Drive

4 Floppy Drive

Deadlock avoidance

Page 262 - 263

Two approaches of deadlock avoidance:

· Process Initial Denial (Do not start a process if its demands might lead to deadlock.)

· Resource Allocation Denial (Do not grant an incremental resource request to a process if this allocation might lead to deadlock.)

Process Initial Denial:

Resource = (R1, R2, …., Rm) Total amount of each resource in the system

Available = (V1, V2, …..Vm) Total amount of each resource not allocated to a process

C11
C12
…
C1m

C21
C22
…
C2m

Requirement of each process

Claim =
U
U
U
U

for each resource

Cn1
Cn2
…
Cnm

A11
A12
…
A1m

A21
A22
…
A2m

Current Allocation

Allocation =
U
U
U
U

An1
An2
…
Anm

The following relationship can be seen to hold:

 n

(1) R1 = V1 +
 Aki,
for all resources either available or allocated

 K=1

(2) C L1<= R1 For all k, i :
No process can claim more than the total amount of resources in the system.

(3) AL1 <= Ck1 For all k, i: No Process is allocated more resources of any type than the

process originally claimed to need.

We can define a deadlock avoidance policy that refuses to start a new process if its resource requirement might lead to deadlock:

Start a new process
Pn+1
only if

n

R1 >= C (n + 1) +
 Cki
for all i

 K = 1

Resource Allocation Denial:

Page 263 - 264

Banker’s Algorithm:
Any time a process may have zero or more resources allocated to it.

The state of the system is simply the current allocation of resources to processes. Thus, the state consists the two vectors, Resource and Available, and the two matrices, Claim and Allocation, defined earlier.

A safe state is a state in which there is at least one sequence in which all of the processes can be run to completion that does not result in deadlock.

An unsafe state is, of course, a state that is not safe.

Determination of a safe state

 Claim Matrix

 Allocation Matrix

(a)

 Initial

 State Resource Vector

Available Vector

(b)

 P2 Runs

 To

 complete

Available vector

(c)

 P1 Runs

 To

 complete
Available Vector

(d)

 P3 Runs

 To
Available vector
 Complete

Determination of an unsafe state

Page 265

 Claim Matrix

Allocation Matrix

Resource Vector

(a)
Initial State

Available Vector

Claim Matrix
Available Matrix

Available Vector

(c) P1 request one unit each of R1 and R3

Now check for safe state:

· But it is not a safe state because each process requires at least one unit of R1, and R1 is not available, so it is an unsafe state.

Note: It is not a deadlock, but in avoidance strategy P1 will block.

Deadlock Detection (By detecting Circular wait condition)

Page 266 - 268

Check at resources allocation time:

· Request Matrix (Qij)

· Allocation Matrix (Aij)

· Resource vector

· Available vector

Detection Algorithm:

1. Mark each process that has a row in the Allocation matrix of all zeros.

2. Initialize a temporary vector W to equal the Available vector

3. Find an index i such that process i is currently unmarked and the ith row o fQ is less than or equal to W. That is Qik <= Wk, for 1 <= k <= m. If no such row is found, terminate the algorithm.

4. If such a row is found, marks process i and add the corresponding row of the allocation matrix to W. That is, set Wk = Wk + Atk. Return to step 3.

A deadlock exists off; but there are unmarked processes at the end of the algorithm.

Resource Vector

Request Matrix

Allocation Matrix

 Available Vector (W)

1. Mark P4 because P4 has no allocated resources.

2. Set W = (00001).

3. Check P1 => Q (01001) Not less then & Not = W (00001) (No mark)

4. Check P2 => Q (00101) Not less then & Not = W (00001) (No mark)

5. Check P3 => Q (00001) Not less then & = W (00001) (Mark P3)

 Set Wk = Wk + Aik : W = (00001) + (00010)

 W = (00011)

· Terminate the algorithm.

Process 1 and Process 2 are unmarked and indicating that these are deadlock.

Deadlock Recovery:

Page 269

1. Abort all deadlocked processes. This is, believe it or not, one of the most common, if not the most common, solution adopted in operating systems.

2. Back up each deadlocked process to some previously defined checkpoint, and restart all processes. This requires that rollback and restart mechanisms be built in to the system. The risk in this approach is that the original deadlock will reoccur. However, the non-determinacy of concurrent processing will usually ensure that this does not happen.

3. Successively abort deadlocked processes until deadlock no longer exists. The order in which processes are selected for abortion should be on the basis of some criterion of minimum cost. After each abortion, the detection algorithm must be reinvaded to see whether deadlock still exists.

4. Successively prompt resources until deadlock no longer exists. As in 3, a cost based selection should be used, and rein vocation of the detection algorithm is required after each preemption. A process than has a resource preempted from it must be rolled back to a point prior to its acquisition of that resource.

Choose the process with the

· Least amount of processor time consumed so far

· Least amount of out put produce so far

· Most estimated time remaining

· Least total resources allocated so far

· Lowest priority

Dining Philosophers Problem

Page 270 - 273
Philosophers = 5

Plates = 5

Forks = 5

· Implement Mutual Exclusion (Never two philosophers will share (use) same fork at a time)

· Avoid deadlock and starvation

Solution to the Dining Philosopher’s Problem

First pick Left Fork then Right Fork (Algorithm)

Variables:

Fork [0…4] of semaphore (1)

 . (Room Semaphore (4))
Int i;

Philosopher (int i)

{

 while

 {

 think;

 . (Wait Room)

 wait (fork [i];

 wait (fork [(I + I) % 5]);

 eat;

 signal (fork [(I + I) % 5]);

 signal (fork [I]);

 . (Signal Room)
 }

}

parbegin

philosopher (0);

philosopher (4);

parend

· Problem: Deadlock will occur if the entire philosophers will sit together at the same time and pick the Left Fork and write with The Right Fork.

· Solution: Allow only Four (4) Philosophers at a time in the Dinning Room.

Scheduling
Page 279 - 288

The Key to multiprogramming is Scheduling. There are four types of scheduling:

1 Long-term scheduling

2 Medium-term scheduling

3 Short-term scheduling

4 I/O scheduling

Scheduling Algorithm

Scheduling Criteria:

a. User Oriented

i. Response time (Minimize the response time for interactive user)

ii. Turn Around Time (Time spent/interval b/w submission of a process and its completion (Execution + Wait)

b. System Oriented

i. Throughput: => Number of jobs processed (completed) per unit of time

ii. Efficiency: =>
 Percentage of time that the processor (CPU) is busy

iii. Fairness: =>
 Make sure each process gets its fair share of CPU.

Alternative scheduling Policies:

The selection function determines which process among ready processes is selected next for execution. The function may be based on Priority, Resource Requirement, or the Execution Characteristics of the process. In the letter case three quantities are significant:

· w = time spent in system so far, (waiting + executing)

· e = time spent in execution so far

· s = total service time required by the process, including e.

Example: The selection function max[w] indicates a First-Come-First-Served (FCFS) discipline.

There are two (2) general categories:

1 Non-preemptive: In this case, once a process is in the Running State, it continues to execute until it terminates or blocks itself to wait for I/O or by requesting some OS Service.

2 Preemptive: The currently running process may be interrupted and moved to the Ready state by the OS. The decision to preempt may be performed when a new process arrives, when an interrupt occurs that places a blocked process in the Ready state, or periodically based on a clock interrupt.

FIFO (FCFS): (First In First Out: First Come First Served)

Page 289 - 298
· Selection Function = Max[w]

· Non Preemptive

· Minimize over head / No starvation

· Not good for short process

Round Rabin: (Time slicing) (50 – 60 clocks per second)

As you know the short process suffer with FCFS and use preemption based on a clock. This policy is called Round Rabin.

· Preemptive (at time quantum)

· Low overhead

· Fair for all short and long process

· No starvation

· Low throughput if quantum size is too small

Shortest Process Next: (FIFO)

· Selection Function = Min[s]

· Non preemptive

· High throughput

· Not good for long process

· Starvation is possible for long process

Shortest Remaining Time:

· Selection Function = Min[s – e]

· Preemptive (At arrival of process in Ready Queue)

· High throughput

· Not good for long process, but better than SPN

· Starvation is possible

Highest Response Ratio Next:

· Selection Function = Max w + s

 S

W= time spent waiting for the processor & S= expected service time

· Non preemptive

· High throughput

· Better for both short and long process

· No starvation

Feed back:

· Preemptive (Like Round Rabin/ Quantum)

· Overhead can be high

· Starvation is possible

PC= Program Counter

IR= Instruction Register

MAR= Memory Address Register

I/O AR= I/O Address Register

I/O BR= I/O Buffer Register

I/O Module

s

.

.

.

Buffers

Data

Data

Data

Data

Instruction

Instruction

Instruction

MAR

MBR

I/O AR

I/O BR

PC

IR

Memory

CPU

Execute Cycle

Fetch Cycle

Execute

Instruction

Fetch Next

Instruction

Start

Halt

Memory Hierarchy

Registers

Cache

Main Memory

Disk Cache

Magnetic Disk

Removable Disk

Program

Timer

I/O

Hardware Failure

Interrupt

Cycle

Interrupts

Enabled

Interrupts

Disabled

Check for Interrupts;

Process Interrupts

Execute Cycle

Fetch Cycle

Execute

Instruction

Fetch Next

Instruction

Start

Halt

Software

Hardware

Device controller

Or other system hardware

Issues interrupt

Save remainder of process

State information

Process Interrupt

Restore Process

State information

Restore old PSW

And

PC

Processor loads new PC value

Based on interrupt

Processor pushes PSW & PC

Onto control stack

Processor signals

Acknowledgement

Of interrupt

Processor finishes execution

Of current instruction

Exit

Pause

Dispatch

Enter

Running

Not Running

Pause

Queue

Dispatch

Exit

Enter

Processor

Event wait

Event occurs

Release

Time out

Dispatch

Admit

Running

Exit

Blocked

New

Ready

Normal completion

Main time limit exceeded

Memory unavailable

Bounds violation

Protection error

Arithmetic error

I/O failure

Invalid instruction

Privilege

Parent termination

Parent request

Event wait

Blocked queue

Event occurs

Time out

Ready Queue

Dispatch

Release

Admit

Processor

Event n queue

Event 2 queue

Event n wait

Event 2 wait

Event n occurs

Event 2 occurs

Event 1 wait

Event 1 queue

Event 1 occurs

Time out

Ready Queue

Dispatch

Release

Admit

Processor

Event n queue

Event 2 queue

Event n wait

Event 2 wait

Event n occurs

Event 2 occurs

Event 1 wait

Event 1 queue

Event 1 occurs

Time out

Ready Queue

Dispatch

Release

Admit

Processor

Activate

Suspend

Suspend

Event wait

Event occurs

Release

Time out

Dispatch

Admit

Running

Exit

Blocked

New

Ready

Suspend

Admit

Admit

Suspend

New

Activate

Activate

Suspend

Blocked

Suspend

Event wait

Event occurs

Release

Time out

Dispatch

Activate

Running

Exit

Blocked

Ready

Suspend

Ready

Primary Process Table

Process Image

Process Image

Process

n

Process

1

I/o Tables

File Tables

Memory Tables

Process n

Process 3

Process 2

Process 1

Processes

Files

Devices

Memory

P1

P2

P n

Kernel

P n

P2

P1

OS

Functions

OS

Functions

OS

Functions

Process Switching Functions

OS n

OS 1

U 1

U 2

U n

Process Switching Functions

OS n

OS 1

U 1

U 2

U n

Process Switching Functions

Return to user

Reschedule

Process

Preempt

Return

System Call

Interrupt

Interrupt,

 Interrupt return

Exit

Sleep

Wake up

Swap out

Wake up

Swap in

Enough memory

Not enough Memory

Fork

Preempted

Zomble

Created

Sleep Swapped

Swap out

Ready to

Run memory

Ready to

Run swapped

Asleep in

Memory

User

Running

Kernel

Running

Kernel

Stack

User

Stack

User

Address

Space

Process

Control

Block

User

Stack

Kernel

Stack

User

Stack

Kernel

Stack

Kernel

Stack

User

Stack

Thread

Control

Block

Thread

Control

Block

Thread

Control

Block

User

Address

Space

Process

Control

Block

Kernel

Space

User

Space

Kernel

Space

User

Space

		Threads

		Library

P

P

P

Kernel

Space

User

Space

P

Threads

Library

Section Z

File Y

Thread X

Handle3

Handle 2

Handle 1

Available

Objects

Object Table

Virtual Address Space Description (Managed by virtual Memory Management)

Access

Token

Process

Switch

Preempted

Pick to

 run

Terminate

Block/

Suspend

Unblock/Resume

Resource Available

Resource

Available

Unblock

Resource Not Available

Stand by

Ready

Running

Terminated

Waiting

Transition

Not Runnable

Runnable

In

Out

B[5]

B[4]

B[3]

B[2]

B[1]

Mail

 Box

P 1

P2

Q 1

Q2

Mail Box

Mail Box

Mail Box

Mail Box

R1

R2

P1

P2

2

4

4

1

3

3

1

0

2

2

3

R3

2

R2

R1

P4

P3

P2

P1

6

3

9

R3

R2

R1

2

0

0

1

1

2

2

1

6

0

0

1

R3

R2

R1

P4

P3

P2

P1

2

2

4

4

1

3

0

0

0

0

0

0

R3

R2

R1

P4

P3

P2

P1

2

0

0

1

1

2

0

0

0

0

0

1

R3

R2

R1

P4

P3

P2

P1

2

2

4

4

1

3

0

0

0

2

2

3

R3

R2

R1

P4

P3

P2

P1

2

0

0

1

1

2

0

0

0

0

0

0

R3

R2

R1

P4

P3

P2

P1

2

0

0

0

0

0

0

0

0

0

0

0

R3

R2

R1

P4

P3

P2

P1

2

2

4

0

0

0

0

0

0

0

0

0

R3

R2

R1

P4

P3

P2

P1

4

3

9

R3

R2

R1

3

2�

7

R3

R2

R1

3

2

6

R3

R2

R1

1

1

0

R3

R2

R1

2

2

4

4

1

3

3

1

0

2

2

3

R3

R2

R1

P4

P3

P2

P1

2

0

0

1

1

2

2

1

6

0

0

1

R3

R2

R1

P4

P3

P2

P1

6

3

9

R3

R2

R1

1

1

0

R3

R2

R1

2

1

1

R3

R2

R1

2

2

4

4

1

3

3

1

0

2

2

3

R3

R2

R1

P4

P3

P2

P1

2

0

0

1

1

23

1

1

5

1

0

2

R3

R2

R1

P4

P3

P2

P1

R5

R4

0

0

0

0

1

1

1

1

1

0

1

0

0

0

1

0

0

0

1

0

R3

R2

R1

P4

P3

P2

P1

R5

R4

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

1

R3

R2

R1

P4

P3

P2

P1

R5

R4

1

2

1

1

 2

R3

R2

R1

R5

R4

1

0

0

0

 0

R3

R2

R1

P 4

P 3

P 2

P 1

P 0

RQn

Release

Processor

RQ1

Release

Processor

RQ0

Release

Admit

Processor

